Sharyn Endow, Ph.D. (Yale University)

Professor, Department of Cell Biology

Director of Undergraduate Studies, Department of Cell Biology

CMB Program, SBB Program, Genetics Program


450 Sands Building, Box 3709
Duke University Medical Center
Durham, NC 27710

Telephone 919-684-4311

Undergraduate Studies (Office hours: 12:30-2pm MWF and 5-6pm MTW)

Kinesin Site

Research in my laboratory is on motor proteins and the mechanisms by which they function in the spindle to ensure normal chromosome distribution during cell division. Molecular motors are force-generating proteins that drive movements of the spindle and chromosomes in dividing cells. We are currently trying to understand the mechanism of motor function – how motors use ATP to produce force and movement in cells – and the contributions by motors to spindle and chromosome dynamics during division.

We are using an approach that combines molecular genetics with structural biology and biophysical methods to determine the basis of motor function. We focus on the kinesin spindle motor, Ncd, discovered in my laboratory, and its striking ‘backward’ or minus-end directed motility. Ncd is unusual in that it moves on microtubules in the opposite direction as kinesin-1, the founding member of the kinesin family.

By constructing chimeric Ncd-kinesin motor proteins, we identified residues required for the reversed movement of Ncd. We then mutated single amino acid residues and converted Ncd into a bidirectional motor that moves either towards the microtubule plus or minus end. Single-molecule laser-trap assays showed that the minus-end directionality of Ncd is due to a large conformational change that occurs when the motor binds to a microtubule.

We are using mutants to trap the motor in different structural states to visualize the conformational changes that occur in the motor as it hydrolyzes ATP and moves on microtubules. We reported a new crystal structure of Ncd that show a large rotation of the coiled-coil stalk – this was interpreted to represent a lever-like movement that amplifies smaller movements within the motor domain. Together with other changes in the motor domain, the stalk rotation is likely to explain the motor mechanism of function.

We are also studying the effects of Ncd on spindle and chromosome dynamics in live cells by transformation into Drosophila fused to GFP, the green fluorescent protein. High-resolution imaging and dynamic studies, including FRAP (fluorescence recovery after photobleaching), give rate constants for motor binding to the spindle and diffusion coefficients in live cells.

Recent Publications:

Liu HL, Hallen MA, & Endow SA (2012) Altered nucleotide-microtuble coupling and increased mechanical output by a kinesin mutant.  PLoS One. 7(10):e47148. PMCID:PMC3473065

Liu HL, Pemble CW 4th, & Endow SA (2012) Neck-motor interactions trigger rotation of the kinesin stalk.  Sci Rep. 2:236

Kull FG & Endow SA. 2013. Force generation by kinesin and myosin cytoskeletal motor proteins. J. Cell Sci. 126, 9-19. PMCID: PMC3603507. Download PDF. Also available at the JCS web site.

Hallen MA, Liang ZY & Endow SA. 2011. Two-state displacement by the kinesin-14 Ncd stalk. Biophys. Chem. 154, 56-65. PMCID: PMC3080049.

Liang ZY, Hallen MA & Endow SA. 2009. Mature Drosophila meiosis I spindles comprise microtubules of mixed polarity. Curr. Biol. 19, 163-168. PMCID: PMC2701147.

Hirose K, Akimaru E, Akiba T, Endow SA, and Amos LA. 2006. Large conformational changes in a kinesin motor catalyzed by interaction wih microtubules. Molecular Cell 23: 913-923.

Skold HN, Komma DJ, and Endow SA. 2005. Assembly pathway of the anastral Drosophila oocyte meiosis I spindle. J. Cell Sci. 118, 1745-1755.

Higuchi H, Bronner CE, Park HW and Endow SA. 2004. Rapid double 8-nm steps by a kinesin mutant. EMBO J. 23, 2993-2999 advance online publication 15 July 2004; doi: 10.1038/sj.emboj.7600306.

Yun M, Zhang X, Park CG, Park HW and Endow SA. 2001. A structural pathway for activation of the kinesin motor ATPase. EMBO J. 20, 2611-2618.

Endow SA and Higuchi H. 2000. A mutant of the motor protein kinesin that moves in both directions on microtubules. Nature 406, 913-916.

Endow SA: Determinants of molecular motor directionality. Nature Cell Biology 1999; 1: 163-167.


Click here for a full list of Publications.